On the OBDD Size for Graphs of Bounded Tree- and Clique-Width

نویسندگان

  • Klaus Meer
  • Dieter Rautenbach
چکیده

We study the size of OBDDs (ordered binary decision diagrams) for representing the adjacency function fG of a graph G on n vertices. Our results are as follows: for graphs of bounded tree-width there is an OBDD of size O(logn) for fG that uses encodings of size O(logn) for the vertices; for graphs of bounded clique-width there is an OBDD of size O(n) for fG that uses encodings of size O(n) for the vertices; for graphs of bounded clique-width such that there is a reduced term for G (to be defined below) that is balanced with depth O(logn) there is an OBDD of size O(n) for fG that uses encodings of size O(logn) for the vertices; for cographs, i.e. graphs of clique-width at most 2, there is an OBDD of size O(n) for fG that uses encodings of size O(logn) for the vertices. This last result improves a recent result by Nunkesser and Woelfel [14].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparison of two approaches for polynomial time algorithms computing basic graph parameters

In this paper we compare and illustrate the algorithmic use of graphs of bounded treewidth and graphs of bounded clique-width. For this purpose we give polynomial time algorithms for computing the four basic graph parameters independence number, clique number, chromatic number, and clique covering number on a given tree structure of graphs of bounded tree-width and graphs of bounded clique-widt...

متن کامل

Clique-width and tree-width of sparse graphs

Tree-width and clique-width are two important graph complexity measures that serve as parameters in many fixed-parameter tractable (FPT) algorithms. The same classes of sparse graphs, in particular of planar graphs and of graphs of bounded degree have bounded tree-width and bounded clique-width. We prove that, for sparse graphs, clique-width is polynomially bounded in terms of tree-width. For p...

متن کامل

Polynomial-time Algorithm for Isomorphism of Graphs with Clique-width at most 3

The clique-width is a measure of complexity of decomposing graphs into certain tree-like structures. The class of graphs with bounded clique-width contains bounded tree-width graphs. While there are many results on the graph isomorphism problem for bounded treewidth graphs, very little is known about isomorphism of bounded cliquewidth graphs. We give the first polynomial-time graph isomorphism ...

متن کامل

Collective Tree Spanners in Graphs with Bounded Genus, Chordality, Tree-Width, or Clique-Width

In this paper we study collective additive tree spanners for special families of graphs including planar graphs, graphs with bounded genus, graphs with bounded tree-width, graphs with bounded cliquewidth, and graphs with bounded chordality. We say that a graph G = (V,E) admits a system of μ collective additive tree r-spanners if there is a system T (G) of at most μ spanning trees of G such that...

متن کامل

Chordal bipartite graphs of bounded tree- and clique-width

A bipartite graph is chordal bipartite if every cycle of length at least six has a chord. In the class of chordal bipartite graphs the tree-width and the clique-width are unbounded. Our main results are that chordal bipartite graphs of bounded vertex degree have bounded tree-width and that k-fork-free chordal bipartite graphs have bounded clique-width, where a k-fork is the graph arising from a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 309  شماره 

صفحات  -

تاریخ انتشار 2006